List of Faculty Publications
Below is a list of Faculty publications imported from PubMed or manually added. By default, publications are sorted by year with titles displayed in ascending alphabetical order.
Shortcuts: Wühr, Martin | Wingreen, Ned | Wieschaus, Eric | Troyanskaya, Olga | Tilghman, Shirley | Storey, John | Singh, Mona | Shvartsman, Stanislav | Shaevitz, Joshua | Rabinowitz, Joshua | Murphy, Coleen | Levine, Michael {Levine, Michael S.} | Gregor, Thomas | Botstein, David | Bialek, William | Ayroles, Julien | Andolfatto, Peter | Akey, Joshua
“Accumulation of recessive lethal mutations in Saccharomyces cerevisiae mlh1 mismatch repair mutants is not associated with gross chromosomal rearrangements.”, Genetics, vol. 174, no. 1, pp. 519-23, 2006.
, “Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus.”, Proc Natl Acad Sci U S A, vol. 107, no. 43, pp. 18551-6, 2010.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
, “Automating the construction of gene ontologies.”, Nat Biotechnol, vol. 31, no. 1, pp. 34-5, 2013.
, “Back to the future: education for systems-level biologists.”, Nat Rev Mol Cell Biol, vol. 7, no. 11, pp. 829-32, 2006.
, “A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae).”, Proc Natl Acad Sci U S A, vol. 100, no. 14, pp. 8348-53, 2003.
, “Bmi-1 regulation of INK4A-ARF is a downstream requirement for transformation of hematopoietic progenitors by E2a-Pbx1.”, Mol Cell, vol. 12, no. 2, pp. 393-400, 2003.
, “Challenges in developing a molecular characterization of cancer.”, Semin Oncol, vol. 29, no. 3, pp. 280-5, 2002.
, “Changing perspectives in yeast research nearly a decade after the genome sequence.”, Genome Res, vol. 15, no. 12, pp. 1611-9, 2005.
, “Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae.”, Proc Natl Acad Sci U S A, vol. 99, no. 25, pp. 16144-9, 2002.
, “Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter.”, Proc Natl Acad Sci U S A, 2015.
, “Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway.”, Mol Biol Cell, vol. 23, no. 15, pp. 3008-24, 2012.
, “Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast.”, Mol Biol Cell, vol. 29, no. 8, pp. 897-910, 2018.
, “Comparing whole genomes using DNA microarrays.”, Nat Rev Genet, vol. 9, no. 4, pp. 291-302, 2008.
, “Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae.”, J Biol, vol. 5, no. 4, p. 11, 2006.
, “Conservation of the metabolomic response to starvation across two divergent microbes.”, Proc Natl Acad Sci U S A, vol. 103, no. 51, pp. 19302-7, 2006.
, “A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes.”, Mol Biol Cell, vol. 23, no. 10, pp. 1986-97, 2012.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast.”, Mol Biol Cell, vol. 19, no. 1, pp. 352-67, 2008.
, “The cost of gene expression underlies a fitness trade-off in yeast.”, Proc Natl Acad Sci U S A, vol. 106, no. 14, pp. 5755-60, 2009.
, “Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast.”, Mol Biol Cell, vol. 22, no. 12, pp. 1997-2009, 2011.
, “Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression.”, Mol Biol Cell, vol. 24, no. 2, pp. 157-68, 2013.
, “Different gene expression patterns in invasive lobular and ductal carcinomas of the breast.”, Mol Biol Cell, vol. 15, no. 6, pp. 2523-36, 2004.
, “Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease.”, Nat Genet, vol. 33 Suppl, pp. 228-37, 2003.
, “Discovery and Functional Characterization of a Yeast Sugar Alcohol Phosphatase.”, ACS Chem Biol, vol. 13, no. 10, pp. 3011-3020, 2018.
, “Disruption of yeast forkhead-associated cell cycle transcription by oxidative stress.”, Mol Biol Cell, vol. 15, no. 12, pp. 5659-69, 2004.
, “Diverse and specific gene expression responses to stresses in cultured human cells.”, Mol Biol Cell, vol. 15, no. 5, pp. 2361-74, 2004.
, “Diverse effects of methylseleninic acid on the transcriptional program of human prostate cancer cells.”, Mol Biol Cell, vol. 15, no. 2, pp. 506-19, 2004.
, “Diversity, topographic differentiation, and positional memory in human fibroblasts.”, Proc Natl Acad Sci U S A, vol. 99, no. 20, pp. 12877-82, 2002.
, “A DNA microarray survey of gene expression in normal human tissues.”, Genome Biol, vol. 6, no. 3, p. R22, 2005.
, “Endothelial cell diversity revealed by global expression profiling.”, Proc Natl Acad Sci U S A, vol. 100, no. 19, pp. 10623-8, 2003.
, “Evaluating gene expression dynamics using pairwise RNA FISH data.”, PLoS Comput Biol, vol. 6, no. 11, p. e1000979, 2010.
, “Expanded protein information at SGD: new pages and proteome browser.”, Nucleic Acids Res, vol. 35, no. Database issue, pp. D468-71, 2007.
, “Expression array technology in the diagnosis and treatment of breast cancer.”, Mol Interv, vol. 2, no. 2, pp. 101-9, 2002.
, “Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome.”, Am J Pathol, vol. 161, no. 6, pp. 1991-6, 2002.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
, “Fungal BLAST and Model Organism BLASTP Best Hits: new comparison resources at the Saccharomyces Genome Database (SGD).”, Nucleic Acids Res, vol. 33, no. Database issue, pp. D374-7, 2005.
, “Gene expression patterns and gene copy number changes in dermatofibrosarcoma protuberans.”, Am J Pathol, vol. 163, no. 6, pp. 2383-95, 2003.
, “Gene expression patterns in human liver cancers.”, Mol Biol Cell, vol. 13, no. 6, pp. 1929-39, 2002.
, “Gene expression patterns in ovarian carcinomas.”, Mol Biol Cell, vol. 14, no. 11, pp. 4376-86, 2003.
, “Gene expression profiles do not consistently predict the clinical treatment response in locally advanced breast cancer.”, Mol Cancer Ther, vol. 5, no. 11, pp. 2914-8, 2006.
, “Gene expression profiling identifies clinically relevant subtypes of prostate cancer.”, Proc Natl Acad Sci U S A, vol. 101, no. 3, pp. 811-6, 2004.
, “Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme.”, Proc Natl Acad Sci U S A, vol. 102, no. 16, pp. 5814-9, 2005.
, “Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.”, PLoS Biol, vol. 2, no. 2, p. E7, 2004.
, “Gene Ontology annotations at SGD: new data sources and annotation methods.”, Nucleic Acids Res, vol. 36, no. Database issue, pp. D577-81, 2008.
, “Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms.”, Proc Natl Acad Sci U S A, vol. 100, no. 6, pp. 3351-6, 2003.
, “Genetic Basis of Ammonium Toxicity Resistance in a Sake Strain of Yeast: A Mendelian Case.”, G3 (Bethesda), 2013.
, “Genetic variation and the fate of beneficial mutations in asexual populations.”, Genetics, vol. 188, no. 3, pp. 647-61, 2011.
, “GeneXplorer: an interactive web application for microarray data visualization and analysis.”, BMC Bioinformatics, vol. 5, p. 141, 2004.
, “A genome scan for hypertension susceptibility loci in populations of Chinese and Japanese origins.”, Am J Hypertens, vol. 16, no. 2, pp. 158-62, 2003.
, “Genome Snapshot: a new resource at the Saccharomyces Genome Database (SGD) presenting an overview of the Saccharomyces cerevisiae genome.”, Nucleic Acids Res, vol. 34, no. Database issue, pp. D442-5, 2006.
, “Genome-scale identification of membrane-associated human mRNAs.”, PLoS Genet, vol. 2, no. 1, p. e11, 2006.
, “Genome-sequencing anniversary. Fruits of genome sequences for biology.”, Science, vol. 331, no. 6020, p. 1025, 2011.
, “Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae.”, J Biol Chem, vol. 277, no. 34, pp. 31079-88, 2002.
, “Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains.”, PLoS One, vol. 2, no. 3, p. e322, 2007.
, “Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray.”, Science, vol. 311, no. 5769, pp. 1932-6, 2006.
, “Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells.”, J Vis Exp, no. 110, p. e54239 |, 2016.
, “Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation.”, Proc Natl Acad Sci U S A, vol. 99, no. 18, pp. 11796-801, 2002.
, “GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes.”, Bioinformatics, vol. 20, no. 18, pp. 3710-5, 2004.
, “Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations.”, Mol Biol Cell, vol. 21, no. 1, pp. 198-211, 2010.
, “Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures.”, Mol Biol Cell, vol. 16, no. 5, pp. 2503-17, 2005.
, “Identification of alterations in DNA copy number in host stromal cells during tumor progression.”, Proc Natl Acad Sci U S A, vol. 103, no. 52, pp. 19848-53, 2006.
, “Identification of genes periodically expressed in the human cell cycle and their expression in tumors.”, Mol Biol Cell, vol. 13, no. 6, pp. 1977-2000, 2002.
, “Immunoelectron microscopy of aldehyde-fixed yeast cells.”, Methods Enzymol, vol. 351, pp. 50-81, 2002.
, “Inference of combinatorial regulation in yeast transcriptional networks: a case study of sporulation.”, Proc Natl Acad Sci U S A, vol. 102, no. 6, pp. 1998-2003, 2005.
, “Influence of genotype and nutrition on survival and metabolism of starving yeast.”, Proc Natl Acad Sci U S A, vol. 105, no. 19, pp. 6930-5, 2008.
, “Introductory science and mathematics education for 21st-Century biologists.”, Science, vol. 303, no. 5659, pp. 788-90, 2004.
, “Ira Herskowitz: 1946-2003.”, Genetics, vol. 166, no. 2, pp. 653-60, 2004.
, “It's the data!”, Mol Biol Cell, vol. 21, no. 1, pp. 4-6, 2010.
, “Lasker∼Koshland to genetics pioneer.”, Cell, vol. 158, no. 6, pp. 1230-2, 2014.
, “Loss of a 20S proteasome activator in Saccharomyces cerevisiae downregulates genes important for genomic integrity, increases DNA damage, and selectively sensitizes cells to agents with diverse mechanisms of action.”, G3 (Bethesda), vol. 2, no. 8, pp. 943-59, 2012.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Metabolic cycling without cell division cycling in respiring yeast.”, Proc Natl Acad Sci U S A, vol. 108, no. 47, pp. 19090-5, 2011.
, “A method for detecting and correcting feature misidentification on expression microarrays.”, BMC Genomics, vol. 5, p. 64, 2004.
, “Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors.”, Proc Natl Acad Sci U S A, vol. 99, no. 20, pp. 12963-8, 2002.
, “Minor Isozymes Tailor Yeast Metabolism to Carbon Availability.”, mSystems, vol. 4, no. 1, 2019.
, “Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae.”, J Biol Chem, vol. 277, no. 47, pp. 44817-25, 2002.
, “Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data.”, Nat Genet, vol. 34, no. 2, pp. 166-76, 2003.
, “A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds.”, Nat Biotechnol, vol. 27, no. 4, pp. 369-77, 2009.
, “Molecular characterisation of soft tissue tumours: a gene expression study.”, Lancet, vol. 359, no. 9314, pp. 1301-7, 2002.
, “A new system for comparative functional genomics of Saccharomyces yeasts.”, Genetics, vol. 195, no. 1, pp. 275-87, 2013.
, “Nonparametric methods for identifying differentially expressed genes in microarray data.”, Bioinformatics, vol. 18, no. 11, pp. 1454-61, 2002.
, “Nutritional homeostasis in batch and steady-state culture of yeast.”, Mol Biol Cell, vol. 15, no. 9, pp. 4089-104, 2004.
, “Optimized detection of sequence variation in heterozygous genomes using DNA microarrays with isothermal-melting probes.”, Proc Natl Acad Sci U S A, vol. 107, no. 4, pp. 1482-7, 2010.
, “Orthology and functional conservation in eukaryotes.”, Annu Rev Genet, vol. 41, pp. 465-507, 2007.
, “Overview of the Alliance for Cellular Signaling.”, Nature, vol. 420, no. 6916, pp. 703-6, 2002.
, “Perturbation-based analysis and modeling of combinatorial regulation in the yeast sulfur assimilation pathway.”, Mol Biol Cell, vol. 23, no. 15, pp. 2993-3007, 2012.
, “Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations.”, Nature, vol. 500, no. 7464, pp. 571-4, 2013.
, “Phospholipase A2 group IIA expression in gastric adenocarcinoma is associated with prolonged survival and less frequent metastasis.”, Proc Natl Acad Sci U S A, vol. 99, no. 25, pp. 16203-8, 2002.
, “Phylogenetic portrait of the Saccharomyces cerevisiae functional genome.”, G3 (Bethesda), vol. 3, no. 8, pp. 1335-40, 2013.
, “Planning the genome institute's future.”, Science, vol. 299, no. 5612, p. 1515; author reply 1515, 2003.
, “A polymorphism in the beta1 adrenergic receptor is associated with resting heart rate.”, Am J Hum Genet, vol. 70, no. 4, pp. 935-42, 2002.
, “Predicting cellular growth from gene expression signatures.”, PLoS Comput Biol, vol. 5, no. 1, p. e1000257, 2009.
, “Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes.”, N Engl J Med, vol. 350, no. 18, pp. 1828-37, 2004.
, “The Princeton Protein Orthology Database (P-POD): a comparative genomics analysis tool for biologists.”, PLoS One, vol. 2, no. 8, p. e766, 2007.
, “Rapid synthesis and screening of chemically activated transcription factors with GFP-based reporters.”, J Vis Exp, no. 81, p. e51153, 2013.
, “Recurated protein interaction datasets.”, Nat Methods, vol. 6, no. 12, pp. 860-1, 2009.
, “Repeated observation of breast tumor subtypes in independent gene expression data sets.”, Proc Natl Acad Sci U S A, vol. 100, no. 14, pp. 8418-23, 2003.
, “The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.”, PLoS Genet, vol. 4, no. 12, p. e1000303, 2008.
, “The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response.”, Mol Biol Cell, vol. 15, no. 3, pp. 1254-61, 2004.
, “Saccharomyces cerevisiae S288C genome annotation: a working hypothesis.”, Yeast, vol. 23, no. 12, pp. 857-65, 2006.
, “Saccharomyces Genome Database.”, Methods Enzymol, vol. 350, pp. 329-46, 2002.
, “Saccharomyces Genome Database provides mutant phenotype data.”, Nucleic Acids Res, vol. 38, no. Database issue, pp. D433-6, 2010.
, “Saccharomyces Genome Database (SGD) provides biochemical and structural information for budding yeast proteins.”, Nucleic Acids Res, vol. 31, no. 1, pp. 216-8, 2003.
, “Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO).”, Nucleic Acids Res, vol. 30, no. 1, pp. 69-72, 2002.
, “Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms.”, Nucleic Acids Res, vol. 32, no. Database issue, pp. D311-4, 2004.
, “Saccharomyces genome database: underlying principles and organisation.”, Brief Bioinform, vol. 5, no. 1, pp. 9-22, 2004.
, “Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast.”, Mol Biol Cell, vol. 20, no. 3, pp. 891-903, 2009.
, “SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data.”, Nucleic Acids Res, vol. 31, no. 1, pp. 219-23, 2003.
, “The Stanford Microarray Database: data access and quality assessment tools.”, Nucleic Acids Res, vol. 31, no. 1, pp. 94-6, 2003.
, “Stereotyped and specific gene expression programs in human innate immune responses to bacteria.”, Proc Natl Acad Sci U S A, vol. 99, no. 2, pp. 972-7, 2002.
, “Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function.”, Proc Natl Acad Sci U S A, vol. 108, no. 45, pp. E1089-98, 2011.
, “Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae.”, Nucleic Acids Res, vol. 42, no. 6, p. e48, 2014.
, “Synthetic gene expression perturbation systems with rapid, tunable, single-gene specificity in yeast.”, Nucleic Acids Res, vol. 41, no. 4, p. e57, 2013.
, “A systematic approach to reconstructing transcription networks in Saccharomycescerevisiae.”, Proc Natl Acad Sci U S A, vol. 99, no. 26, pp. 16893-8, 2002.
, “Systematic structure-function analysis of the small GTPase Arf1 in yeast.”, Mol Biol Cell, vol. 13, no. 5, pp. 1652-64, 2002.
, “Systemic and cell type-specific gene expression patterns in scleroderma skin.”, Proc Natl Acad Sci U S A, vol. 100, no. 21, pp. 12319-24, 2003.
, “System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae.”, Genetics, vol. 187, no. 1, pp. 299-317, 2011.
, “Systems-level analysis of mechanisms regulating yeast metabolic flux.”, Science, vol. 354, no. 6311, 2016.
, “T cell receptor-independent basal signaling via Erk and Abl kinases suppresses RAG gene expression.”, PLoS Biol, vol. 1, no. 2, p. E53, 2003.
, “Technological innovation leads to fundamental understanding in cell biology.”, Mol Biol Cell, vol. 21, no. 22, pp. 3791-2, 2010.
, “A test of the coordinated expression hypothesis for the origin and maintenance of the GAL cluster in yeast.”, PLoS One, vol. 6, no. 9, p. e25290, 2011.
, “Tissue microarray validation of epidermal growth factor receptor and SALL2 in synovial sarcoma with comparison to tumors of similar histology.”, Am J Pathol, vol. 163, no. 4, pp. 1449-56, 2003.
, “TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 24, no. 2, pp. 115-28, 2013.
, “Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 15, no. 3, pp. 1233-43, 2004.
, “Transcriptional response of human mast cells stimulated via the Fc(epsilon)RI and identification of mast cells as a source of IL-11.”, BMC Immunol, vol. 3, p. 5, 2002.
, “Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source.”, Proc Natl Acad Sci U S A, vol. 103, no. 2, pp. 389-94, 2006.
, “Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes.”, Proc Natl Acad Sci U S A, vol. 99, no. 13, pp. 8886-91, 2002.
, “Universal Reference RNA as a standard for microarray experiments.”, BMC Genomics, vol. 5, no. 1, p. 20, 2004.
, “Variation in gene expression patterns in follicular lymphoma and the response to rituximab.”, Proc Natl Acad Sci U S A, vol. 100, no. 4, pp. 1926-30, 2003.
, “Variation in gene expression patterns in human gastric cancers.”, Mol Biol Cell, vol. 14, no. 8, pp. 3208-15, 2003.
, “Visualization and analysis of mRNA molecules using fluorescence in situ hybridization in Saccharomyces cerevisiae.”, J Vis Exp, no. 76, p. e50382, 2013.
, “Why we need more basic biology research, not less.”, Mol Biol Cell, vol. 23, no. 21, pp. 4160-1, 2012.
, “Willing to do the math: an interview with David Botstein. Interview by Jane Gitschier.”, PLoS Genet, vol. 2, no. 5, p. e79, 2006.
, “Yeast: an experimental organism for 21st Century biology.”, Genetics, vol. 189, no. 3, pp. 695-704, 2011.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
,