List of Faculty Publications
Below is a list of Faculty publications imported from PubMed or manually added. By default, publications are sorted by year with titles displayed in ascending alphabetical order.
Shortcuts: Wühr, Martin | Wingreen, Ned | Wieschaus, Eric | Troyanskaya, Olga | Tilghman, Shirley | Storey, John | Singh, Mona | Shvartsman, Stanislav | Shaevitz, Joshua | Rabinowitz, Joshua | Murphy, Coleen | Levine, Michael {Levine, Michael S.} | Gregor, Thomas | Botstein, David | Bialek, William | Ayroles, Julien | Andolfatto, Peter | Akey, Joshua
Filters: Author is Hess, David C [Clear All Filters]
“Predicting gene function in a hierarchical context with an ensemble of classifiers.”, Genome Biol, vol. 9 Suppl 1, p. S3, 2008.
, “The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction.”, Bioinformatics, vol. 25, no. 18, pp. 2404-10, 2009.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
, “Predicting gene function in a hierarchical context with an ensemble of classifiers.”, Genome Biol, vol. 9 Suppl 1, p. S3, 2008.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
, “Predicting gene function in a hierarchical context with an ensemble of classifiers.”, Genome Biol, vol. 9 Suppl 1, p. S3, 2008.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Directing experimental biology: a case study in mitochondrial biogenesis.”, PLoS Comput Biol, vol. 5, no. 3, p. e1000322, 2009.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
, “Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.”, PLoS Genet, vol. 5, no. 3, p. e1000407, 2009.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction.”, Bioinformatics, vol. 25, no. 18, pp. 2404-10, 2009.
, “Directing experimental biology: a case study in mitochondrial biogenesis.”, PLoS Comput Biol, vol. 5, no. 3, p. e1000322, 2009.
, “Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.”, PLoS Genet, vol. 5, no. 3, p. e1000407, 2009.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction.”, Bioinformatics, vol. 25, no. 18, pp. 2404-10, 2009.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.”, PLoS Genet, vol. 5, no. 3, p. e1000407, 2009.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Predicting gene function in a hierarchical context with an ensemble of classifiers.”, Genome Biol, vol. 9 Suppl 1, p. S3, 2008.
, “Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.”, PLoS Genet, vol. 5, no. 3, p. e1000407, 2009.
, “The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction.”, Bioinformatics, vol. 25, no. 18, pp. 2404-10, 2009.
, “Directing experimental biology: a case study in mitochondrial biogenesis.”, PLoS Comput Biol, vol. 5, no. 3, p. e1000322, 2009.
, “Predicting gene function in a hierarchical context with an ensemble of classifiers.”, Genome Biol, vol. 9 Suppl 1, p. S3, 2008.
, “Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.”, PLoS Genet, vol. 5, no. 3, p. e1000407, 2009.
, “Directing experimental biology: a case study in mitochondrial biogenesis.”, PLoS Comput Biol, vol. 5, no. 3, p. e1000322, 2009.
, “Directing experimental biology: a case study in mitochondrial biogenesis.”, PLoS Comput Biol, vol. 5, no. 3, p. e1000322, 2009.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.”, PLoS Genet, vol. 5, no. 3, p. e1000407, 2009.
, “Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.”, PLoS Genet, vol. 5, no. 3, p. e1000407, 2009.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Predicting gene function in a hierarchical context with an ensemble of classifiers.”, Genome Biol, vol. 9 Suppl 1, p. S3, 2008.
, “Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.”, PLoS Genet, vol. 5, no. 3, p. e1000407, 2009.
, “The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction.”, Bioinformatics, vol. 25, no. 18, pp. 2404-10, 2009.
, “Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.”, PLoS Genet, vol. 5, no. 3, p. e1000407, 2009.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Directing experimental biology: a case study in mitochondrial biogenesis.”, PLoS Comput Biol, vol. 5, no. 3, p. e1000322, 2009.
, “Predicting gene function in a hierarchical context with an ensemble of classifiers.”, Genome Biol, vol. 9 Suppl 1, p. S3, 2008.
, “Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.”, PLoS Genet, vol. 5, no. 3, p. e1000407, 2009.
, “The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction.”, Bioinformatics, vol. 25, no. 18, pp. 2404-10, 2009.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Directing experimental biology: a case study in mitochondrial biogenesis.”, PLoS Comput Biol, vol. 5, no. 3, p. e1000322, 2009.
, “Predicting gene function in a hierarchical context with an ensemble of classifiers.”, Genome Biol, vol. 9 Suppl 1, p. S3, 2008.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Directing experimental biology: a case study in mitochondrial biogenesis.”, PLoS Comput Biol, vol. 5, no. 3, p. e1000322, 2009.
, “Exploring the functional landscape of gene expression: directed search of large microarray compendia.”, Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Directing experimental biology: a case study in mitochondrial biogenesis.”, PLoS Comput Biol, vol. 5, no. 3, p. e1000322, 2009.
, “Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.”, Proc Natl Acad Sci U S A, vol. 110, no. 46, pp. E4393-402, 2013.
, “Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.”, PLoS Comput Biol, vol. 6, no. 11, p. e1001009, 2010.
, “Ammonium toxicity and potassium limitation in yeast.”, PLoS Biol, vol. 4, no. 11, p. e351, 2006.
,