List of Faculty Publications
Below is a list of Faculty publications imported from PubMed or manually added. By default, publications are sorted by year with titles displayed in ascending alphabetical order.
Shortcuts: Wühr, Martin | Wingreen, Ned | Wieschaus, Eric | Troyanskaya, Olga | Tilghman, Shirley | Storey, John | Singh, Mona | Shvartsman, Stanislav | Shaevitz, Joshua | Rabinowitz, Joshua | Murphy, Coleen | Levine, Michael {Levine, Michael S.} | Gregor, Thomas | Botstein, David | Bialek, William | Ayroles, Julien | Andolfatto, Peter | Akey, Joshua
Filters: Author is Silverman, Sanford J [Clear All Filters]
“Visualization and analysis of mRNA molecules using fluorescence in situ hybridization in Saccharomyces cerevisiae.”, J Vis Exp, no. 76, p. e50382, 2013.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast.”, Mol Biol Cell, vol. 29, no. 8, pp. 897-910, 2018.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
, “Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast.”, Mol Biol Cell, vol. 29, no. 8, pp. 897-910, 2018.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
, “Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast.”, Mol Biol Cell, vol. 29, no. 8, pp. 897-910, 2018.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast.”, Mol Biol Cell, vol. 29, no. 8, pp. 897-910, 2018.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast.”, Mol Biol Cell, vol. 29, no. 8, pp. 897-910, 2018.
, “Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast.”, Mol Biol Cell, vol. 29, no. 8, pp. 897-910, 2018.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Visualization and analysis of mRNA molecules using fluorescence in situ hybridization in Saccharomyces cerevisiae.”, J Vis Exp, no. 76, p. e50382, 2013.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast.”, Mol Biol Cell, vol. 29, no. 8, pp. 897-910, 2018.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Visualization and analysis of mRNA molecules using fluorescence in situ hybridization in Saccharomyces cerevisiae.”, J Vis Exp, no. 76, p. e50382, 2013.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Visualization and analysis of mRNA molecules using fluorescence in situ hybridization in Saccharomyces cerevisiae.”, J Vis Exp, no. 76, p. e50382, 2013.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.”, Proc Natl Acad Sci U S A, vol. 107, no. 15, pp. 6946-51, 2010.
, “Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast.”, Mol Biol Cell, vol. 29, no. 8, pp. 897-910, 2018.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Visualization and analysis of mRNA molecules using fluorescence in situ hybridization in Saccharomyces cerevisiae.”, J Vis Exp, no. 76, p. e50382, 2013.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
, “Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.”, Mol Biol Cell, vol. 22, no. 21, pp. 4192-204, 2011.
, “Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.”, Mol Biol Cell, vol. 22, no. 22, pp. 4447-59, 2011.
,