List of Faculty Publications

Below is a list of Faculty publications imported from PubMed or manually added. By default, publications are sorted by year with titles displayed in ascending alphabetical order.
Shortcuts: Wühr, Martin | Wingreen, Ned | Wieschaus, Eric | Troyanskaya, Olga | Tilghman, Shirley | Storey, John | Singh, Mona | Shvartsman, Stanislav | Shaevitz, Joshua | Rabinowitz, Joshua | Murphy, Coleen | Levine, Michael {Levine, Michael S.} | Gregor, Thomas | Botstein, David | Bialek, William | Ayroles, Julien | Andolfatto, Peter | Akey, Joshua

Filters: Keyword is Gene Expression and Author is Troyanskaya, Olga G  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Gene Expression
C. L. Myers, Chen, X., and Troyanskaya, O. G., Visualization-based discovery and analysis of genomic aberrations in microarray data., BMC Bioinformatics, vol. 6, p. 146, 2005.
O. G. Troyanskaya, Garber, M. E., Brown, P. O., Botstein, D., and Altman, R. B., Nonparametric methods for identifying differentially expressed genes in microarray data., Bioinformatics, vol. 18, no. 11, pp. 1454-61, 2002.
C. Huttenhower, Flamholz, A. I., Landis, J. N., Sahi, S., Myers, C. L., Olszewski, K. L., Hibbs, M. A., Siemers, N. O., Troyanskaya, O. G., and Coller, H. A., Nearest Neighbor Networks: clustering expression data based on gene neighborhoods., BMC Bioinformatics, vol. 8, p. 250, 2007.
M. A. Hibbs, Hess, D. C., Myers, C. L., Huttenhower, C., Li, K., and Troyanskaya, O. G., Exploring the functional landscape of gene expression: directed search of large microarray compendia., Bioinformatics, vol. 23, no. 20, pp. 2692-9, 2007.
J. Zhou, Theesfeld, C. L., Yao, K., Chen, K. M., Wong, A. K., and Troyanskaya, O. G., Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk., Nat Genet, vol. 50, no. 8, pp. 1171-1179, 2018.
J. Zhou, Park, C. Y., Theesfeld, C. L., Wong, A. K., Yuan, Y., Scheckel, C., Fak, J. J., Funk, J., Yao, K., Tajima, Y., Packer, A., Darnell, R. B., and Troyanskaya, O. G., Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk., Nat Genet, vol. 51, no. 6, pp. 973-980, 2019.